Status on Local Muon Tracking and Error Matrix Propagation

- momentum resolution:
- → with different segment algorithms (LL, Combi)
- \rightarrow on MC segments
- pull distributions:
- → on MC segments
- looking at some data

Momentum Resolution

- sample used: single muons: Pt from 5 to 100 GeV
- t52 or t53 (with new version of LL segment algorithm with vertex constraint)
 - \rightarrow with *LL* or *Combi* segment algorithm
 - → fixed segment errors

momentum resolution in the deviation plane:

$$(q/P_{fit} - q/P_{MC}) \times P_{MC} \sim 35\%$$

- → roughly the same for A and BC layers
- → roughly the same with LL and Combi segment algorithms

Segment Resolution

- drift angle resolution at A layer:
 - → better resolution and shape using LL due to vertex constraint
- drift angle resolution at BC layer:
 - → both algorithms show tails (wrong BC association?)
- phi angle:
 - → better shape for LL
- position resolution:
 - → better resolution for LL at A layer due to vertex constraint

Results with MC segments

• with smeared MC segments:

 \rightarrow angle: $\sigma = 0.001$ rad

 \rightarrow position: $\sigma = 0.08$ cm

momentum resolution:

$$(q/P_{fit} - q/P_{MC}) \times P_{MC} \sim 25\%$$

• errors:

- \rightarrow pull in 1/p: OK (phi dependence corrected)
- → pull in px, py, pz at A layer (after error propagation): OK
- → pull in position: to be worked on

Conclusion

- local muon track:
 - → reasonable resolution
 - → we are able to find local tracks in data

- error matrix propagation:
 - → still need good segment errors
 - \rightarrow look at the association with central tracks